McComedy: A user-friendly tool for next-generation individual-based modeling of microbial consumer-resource systems

Author:

Bogdanowski AndréORCID,Banitz ThomasORCID,Muhsal Linea KatharinaORCID,Kost ChristianORCID,Frank KarinORCID

Abstract

Individual-based modeling is widely applied to investigate the ecological mechanisms driving microbial community dynamics. In such models, the population or community dynamics emerge from the behavior and interplay of individual entities, which are simulated according to a predefined set of rules. If the rules that govern the behavior of individuals are based on generic and mechanistically sound principles, the models are referred to as next-generation individual-based models. These models perform particularly well in recapitulating actual ecological dynamics. However, implementation of such models is time-consuming and requires proficiency in programming or in using specific software, which likely hinders a broader application of this powerful method. Here we present McComedy, a modeling tool designed to facilitate the development of next-generation individual-based models of microbial consumer-resource systems. This tool allows flexibly combining pre-implemented building blocks that represent physical and biological processes. The ability of McComedy to capture the essential dynamics of microbial consumer-resource systems is demonstrated by reproducing and furthermore adding to the results of two distinct studies from the literature. With this article, we provide a versatile tool for developing next-generation individual-based models that can foster understanding of microbial ecology in both research and education.

Funder

osnabrück university, evocell

german research foundation

helmholtz research program terrestrial environments

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3