Adaptive control of movement deceleration during saccades

Author:

Orozco Simon P.ORCID,Albert Scott T.ORCID,Shadmehr RezaORCID

Abstract

As you read this text, your eyes make saccades that guide your fovea from one word to the next. Accuracy of these movements require the brain to monitor and learn from visual errors. A current model suggests that learning is supported by two different adaptive processes, one fast (high error sensitivity, low retention), and the other slow (low error sensitivity, high retention). Here, we searched for signatures of these hypothesized processes and found that following experience of a visual error, there was an adaptive change in the motor commands of the subsequent saccade. Surprisingly, this adaptation was not uniformly expressed throughout the movement. Rather, after experience of a single error, the adaptive response in the subsequent trial was limited to the deceleration period. After repeated exposure to the same error, the acceleration period commands also adapted, and exhibited resistance to forgetting during set-breaks. In contrast, the deceleration period commands adapted more rapidly, but suffered from poor retention during these same breaks. State-space models suggested that acceleration and deceleration periods were supported by a shared adaptive state which re-aimed the saccade, as well as two separate processes which resembled a two-state model: one that learned slowly and contributed primarily via acceleration period commands, and another that learned rapidly but contributed primarily via deceleration period commands.

Funder

National Science Foundation

National Institutes of Health

Office of Naval Research

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference67 articles.

1. Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease;H Golla;EurJNeurosci,2008

2. Cerebellar contributions to adaptive control of saccades in humans;M Xu-Wilson;JNeurosci,2009

3. Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum;DJ Herzfeld;NatNeurosci,2018

4. Memory of learning facilitates saccadic adaptation in the monkey;Y Kojima;JNeurosci,2004

5. Spontaneous recovery of motor memory during saccade adaptation;V Ethier;JNeurophysiol,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3