There are no equal opportunity infectors: Epidemiological modelers must rethink our approach to inequality in infection risk

Author:

Zelner JonORCID,Masters Nina B.ORCID,Naraharisetti RamyaORCID,Mojola Sanyu A.ORCID,Chowkwanyun Merlin,Malosh RyanORCID

Abstract

Mathematical models have come to play a key role in global pandemic preparedness and outbreak response: helping to plan for disease burden, hospital capacity, and inform nonpharmaceutical interventions. Such models have played a pivotal role in the COVID-19 pandemic, with transmission models—and, by consequence, modelers—guiding global, national, and local responses to SARS-CoV-2. However, these models have largely not accounted for the social and structural factors, which lead to socioeconomic, racial, and geographic health disparities. In this piece, we raise and attempt to clarify several questions relating to this important gap in the research and practice of infectious disease modeling: Why do epidemiologic models of emerging infections typically ignore known structural drivers of disparate health outcomes? What have been the consequences of a framework focused primarily on aggregate outcomes on infection equity? What should be done to develop a more holistic approach to modeling-based decision-making during pandemics? In this review, we evaluate potential historical and political explanations for the exclusion of drivers of disparity in infectious disease models for emerging infections, which have often been characterized as “equal opportunity infectors” despite ample evidence to the contrary. We look to examples from other disease systems (HIV, STIs) and successes in including social inequity in models of acute infection transmission as a blueprint for how social connections, environmental, and structural factors can be integrated into a coherent, rigorous, and interpretable modeling framework. We conclude by outlining principles to guide modeling of emerging infections in ways that represent the causes of inequity in infection as central rather than peripheral mechanisms.

Funder

National Center for Immunization and Respiratory Diseases

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3