Abstract
Variation in the acoustic structure of vocal signals is important to communicate social information. However, relatively little is known about the features that receivers extract to decipher relevant social information. Here, we took an expansive, bottom-up approach to delineate the feature space that could be important for processing social information in zebra finch song. Using operant techniques, we discovered that female zebra finches can consistently discriminate brief song phrases (“motifs”) from different social contexts. We then applied machine learning algorithms to classify motifs based on thousands of time-series features and to uncover acoustic features for motif discrimination. In addition to highlighting classic acoustic features, the resulting algorithm revealed novel features for song discrimination, for example, measures of time irreversibility (i.e., the degree to which the statistical properties of the actual and time-reversed signal differ). Moreover, the algorithm accurately predicted female performance on individual motif exemplars. These data underscore and expand the promise of broad time-series phenotyping to acoustic analyses and social decision-making.
Funder
Natural Sciences and Engineering Research Council of Canada
Fonds de Recherche du Québec - Santé
Canadian Foundation for Innovation
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献