ORN: Inferring patient-specific dysregulation status of pathway modules in cancer with OR-gate Network

Author:

Liang LifanORCID,Zhu KunjuORCID,Tao JunyanORCID,Lu SongjianORCID

Abstract

Pathway level understanding of cancer plays a key role in precision oncology. However, the current amount of high-throughput data cannot support the elucidation of full pathway topology. In this study, instead of directly learning the pathway network, we adapted the probabilistic OR gate to model the modular structure of pathways and regulon. The resulting model, OR-gate Network (ORN), can simultaneously infer pathway modules of somatic alterations, patient-specific pathway dysregulation status, and downstream regulon. In a trained ORN, the differentially expressed genes (DEGs) in each tumour can be explained by somatic mutations perturbing a pathway module. Furthermore, the ORN handles one of the most important properties of pathway perturbation in tumours, the mutual exclusivity. We have applied the ORN to lower-grade glioma (LGG) samples and liver hepatocellular carcinoma (LIHC) samples in TCGA and breast cancer samples from METABRIC. Both datasets have shown abnormal pathway activities related to immune response and cell cycles. In LGG samples, ORN identified pathway modules closely related to glioma development and revealed two pathways closely related to patient survival. We had similar results with LIHC samples. Additional results from the METABRIC datasets showed that ORN could characterize critical mechanisms of cancer and connect them to less studied somatic mutations (e.g., BAP1, MIR604, MICAL3, and telomere activities), which may generate novel hypothesis for targeted therapy.

Funder

National Institutes of Health

National Cancer Institute

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3