Abstract
Shape is a defining feature of objects, and human observers can effortlessly compare shapes to determine how similar they are. Yet, to date, no image-computable model can predict how visually similar or different shapes appear. Such a model would be an invaluable tool for neuroscientists and could provide insights into computations underlying human shape perception. To address this need, we developed a model (‘ShapeComp’), based on over 100 shape features (e.g., area, compactness, Fourier descriptors). When trained to capture the variance in a database of >25,000 animal silhouettes, ShapeComp accurately predicts human shape similarity judgments between pairs of shapes without fitting any parameters to human data. To test the model, we created carefully selected arrays of complex novel shapes using a Generative Adversarial Network trained on the animal silhouettes, which we presented to observers in a wide range of tasks. Our findings show that incorporating multiple ShapeComp dimensions facilitates the prediction of human shape similarity across a small number of shapes, and also captures much of the variance in the multiple arrangements of many shapes. ShapeComp outperforms both conventional pixel-based metrics and state-of-the-art convolutional neural networks, and can also be used to generate perceptually uniform stimulus sets, making it a powerful tool for investigating shape and object representations in the human brain.
Funder
DFG funded Collaborative Research Center “Cardinal Mechanisms of Perception”
European Research Council
Marie-Skłodowska-Curie Actions Individual Fellowship
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Reference146 articles.
1. Recognition-by-components: a theory of human image understanding;I Biederman;Psychological review,1987
2. Nishihara HK. Representation and recognition of the spatial organization of three-dimensional shapes;D Marr;Proceedings of the Royal Society of London. Series B. Biological Sciences,1978
3. Perceptual organization and the representation of natural form;A Pentland;Artif. Intell,1986
4. The importance of shape in early lexical learning;BL Landau;Cognitive Development,1998
5. Deiana, K. Material properties from contours: New insights on object perception;P Baingio;Vision research,2015
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献