Abstract
With the rapid advances of various single-cell technologies, an increasing number of single-cell datasets are being generated, and the computational tools for aligning the datasets which make subsequent integration or meta-analysis possible have become critical. Typically, single-cell datasets from different technologies cannot be directly combined or concatenated, due to the innate difference in the data, such as the number of measured parameters and the distributions. Even datasets generated by the same technology are often affected by the batch effect. A computational approach for aligning different datasets and hence identifying related clusters will be useful for data integration and interpretation in large scale single-cell experiments. Our proposed algorithm called JSOM, a variation of the Self-organizing map, aligns two related datasets that contain similar clusters, by constructing two maps—low-dimensional discretized representation of datasets–that jointly evolve according to both datasets. Here we applied the JSOM algorithm to flow cytometry, mass cytometry, and single-cell RNA sequencing datasets. The resulting JSOM maps not only align the related clusters in the two datasets but also preserve the topology of the datasets so that the maps could be used for further analysis, such as clustering.
Funder
Leona M. and Harry B. Helmsley Charitable Trust
National Science Foundation
ISAC Marylou Ingram Scholars Program
Carol Ann and David D. Flanagan
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献