Mechanisms of ventricular arrhythmias elicited by coexistence of multiple electrophysiological remodeling in ischemia: A simulation study

Author:

Liang CuipingORCID,Li Qince,Wang KuanquanORCID,Du Yimei,Wang WeiORCID,Zhang HengguiORCID

Abstract

Myocardial ischemia, injury and infarction (MI) are the three stages of acute coronary syndrome (ACS). In the past two decades, a great number of studies focused on myocardial ischemia and MI individually, and showed that the occurrence of reentrant arrhythmias is often associated with myocardial ischemia or MI. However, arrhythmogenic mechanisms in the tissue with various degrees of remodeling in the ischemic heart have not been fully understood. In this study, biophysical detailed single-cell models of ischemia 1a, 1b, and MI were developed to mimic the electrophysiological remodeling at different stages of ACS. 2D tissue models with different distributions of ischemia and MI areas were constructed to investigate the mechanisms of the initiation of reentrant waves during the progression of ischemia. Simulation results in 2D tissues showed that the vulnerable windows (VWs) in simultaneous presence of multiple ischemic conditions were associated with the dynamics of wave propagation in the tissues with each single pathological condition. In the tissue with multiple pathological conditions, reentrant waves were mainly induced by two different mechanisms: one is the heterogeneity along the excitation wavefront, especially the abrupt variation in conduction velocity (CV) across the border of ischemia 1b and MI, and the other is the decreased safe factor (SF) for conduction at the edge of the tissue in MI region which is attributed to the increased excitation threshold of MI region. Finally, the reentrant wave was observed in a 3D model with a scar reconstructed from MRI images of a MI patient. These comprehensive findings provide novel insights for understanding the arrhythmic risk during the progression of myocardial ischemia and highlight the importance of the multiple pathological stages in designing medical therapies for arrhythmias in ischemia.

Funder

national natural science foundation of china

National Natural Science Foundation of Chin

Science and Technology Innovation Committee of Shenzhen Municipality

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3