Abstract
The rapid evolution of RNA viruses has been long considered to result from a combination of high copying error frequencies during RNA replication, short generation times and the consequent extensive fixation of neutral or adaptive changes over short periods. While both the identities and sites of mutations are typically modelled as being random, recent investigations of sequence diversity of SARS coronavirus 2 (SARS-CoV-2) have identified a preponderance of C->U transitions, proposed to be driven by an APOBEC-like RNA editing process. The current study investigated whether this phenomenon could be observed in datasets of other RNA viruses. Using a 5% divergence filter to infer directionality, 18 from 36 datasets of aligned coding region sequences from a diverse range of mammalian RNA viruses (including Picornaviridae, Flaviviridae, Matonaviridae, Caliciviridae and Coronaviridae) showed a >2-fold base composition normalised excess of C->U transitions compared to U->C (range 2.1x–7.5x), with a consistently observed favoured 5’ U upstream context. The presence of genome scale RNA secondary structure (GORS) was the only other genomic or structural parameter significantly associated with C->U/U->C transition asymmetries by multivariable analysis (ANOVA), potentially reflecting RNA structure dependence of sites targeted for C->U mutations. Using the association index metric, C->U changes were specifically over-represented at phylogenetically uninformative sites, potentially paralleling extensive homoplasy of this transition reported in SARS-CoV-2. Although mechanisms remain to be functionally characterised, excess C->U substitutions accounted for 11–14% of standing sequence variability of structured viruses and may therefore represent a potent driver of their sequence diversification and longer-term evolution.
Publisher
Public Library of Science (PLoS)
Subject
Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology
Reference62 articles.
1. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles;M. Kimura;GenetRes,1968
2. Non-Darwinian evolution;JL King;Science,1969
3. Slightly deleterious mutant substitutions in evolution;T. Ohta;Nature,1973
4. The evolutionary adaptation of HIV-1 to specific immunity;J. da Silva;Curr HIV Res,2003
5. Positive Darwinian evolution in human influenza A viruses;WM Fitch;Proc Natl Acad Sci U S A,1991
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献