Nasal alum-adjuvanted vaccine promotes IL-33 release from alveolar epithelial cells that elicits IgA production via type 2 immune responses

Author:

Sasaki EitaORCID,Asanuma Hideki,Momose Haruka,Furuhata Keiko,Mizukami TakuoORCID,Hamaguchi Isao

Abstract

Aluminum hydroxide salts (alum) have been added to inactivated vaccines as safe and effective adjuvants to increase the effectiveness of vaccination. However, the exact cell types and immunological factors that initiate mucosal immune responses to alum adjuvants are unclear. In this study, the mechanism of action of alum adjuvant in nasal vaccination was investigated. Alum has been shown to act as a powerful and unique adjuvant when added to a nasal influenza split vaccine in mice. Alum is cytotoxic in the alveoli and stimulates the release of damage-associated molecular patterns, such as dsDNA, interleukin (IL)-1α, and IL-33. We found that Ag-specific IgA antibody (Ab) production was markedly reduced in IL-33-deficient mice. However, no decrease was observed in Ag-specific IgA Ab production with DNase I treatment, and no decrease was observed in IL-1α/β or IL-6 production in IL-33-deficient mice. From the experimental results of primary cultured cells and immunofluorescence staining, although IL-1α was secreted by alveolar macrophage necroptosis, IL-33 release was observed in alveolar epithelial cell necroptosis but not in alveolar macrophages. Alum- or IL-33-dependent Ag uptake enhancement and elevation of OX40L expression were not observed. By stimulating the release of IL-33, alum induced Th2 immunity via IL-5 and IL-13 production in group 2 innate lymphoid cells (ILC2s) and increased MHC class II expression in antigen-presenting cells (APCs) in the lung. Our results suggest that IL-33 secretion by epithelial cell necroptosis initiates APC- and ILC2-mediated T cell activation, which is important for the enhancement of Ag-specific IgA Ab production by alum.

Funder

Japan Agency for Medical Research and Development

japan agency for medical research and development

Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3