Association of plasma miRNAs with early life performance and aging in dairy cattle

Author:

MacLeay Madison,Banos GeorgiosORCID,Donadeu Francesc XavierORCID

Abstract

Early life performance traits in dairy cattle can have important influences on lifetime productivity. Poor health and fertility are of great economical and animal welfare concern. Circulating miRNAs have been linked to several livestock traits, including resistance to infection, fertility, and muscle development. This study aimed to identify circulating miRNAs associated with early life performance traits and aging in dairy cattle. Plasma samples from female calves (n = 12) identified retrospectively as differing in health, growth, and fertility outcomes prior to first calving were analyzed using PCR arrays detecting 378 miRNAs. Levels of 6 miRNAs differed significantly in calves with poor growth/fertility relative to controls (t-test: P<0.05). Additionally, general(ized) (non)linear mixed models identified 1 miRNA associated with average daily gain until weaning, 22 with live bodyweight at one year of age, 47 with age at first service, and 19 with number of infections before first calving. Out of 85 distinct miRNAs that were associated with at least one animal trait, 9 miRNAs were validated by RT-qPCR in a larger cohort (n = 91 animals), which included longitudinal plasma samples (calf, heifer, first lactation cow). Significant associations (P<0.05) involving individual miRNAs or ratios between miRNAs and early-life performance traits were identified, but did not retain significance after multiple testing adjustment. However, levels of 8 plasma miRNAs (miR-126-3p, miR-127, miR-142-5p, miR-154b, miR-27b, miR-30c-5p, miR-34a, miR-363) changed significantly with age, most prominently during the calf-to-heifer transition. Comparative RT-qPCR analyses of these miRNAs across 19 calf tissues showed that most were ubiquitously expressed. Online database mining identified several pathways involved in metabolism and cell signaling as putative biological targets of these miRNAs. These results suggest that miR-126-3p, miR-127, miR-142-5p, miR-154b, miR-27b, miR-30c-5p, miR-34a, miR-363 are involved in regulating growth and development from birth to first lactation (~2 years old) and could provide useful biomarkers of aging in cattle.

Funder

College of Medicine and Veterinary Medicine, University of Edinburgh

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference71 articles.

1. Macrae A, Esslemont R. Dairy Cattle Herd Health The Prevalence and Cost of Important Endemic Diseases and Fertility in Dairy Herds in the UK. In: Bovine Medicine. 2015. p. 325–37.

2. Association between growth rates, age at first calving and subsequent fertility, milk production and survival in Holstein-Friesian heifers;JS Cooke;Open J Anim Sci,2013

3. Rates and risk factors for contagious disease and mortality in young dairy heifers;K Johnson;CAB Rev Perspect Agric Vet Sci Nutr Nat Resour,2011

4. Miglior F, Chesnais J, Doormaal BJ Van, Food G, Canada A food, Network CD, et al. Genetic improvement: a major component of increased dairy farm profitability. In: 38th International Committee for Animal Recording. 2012. p. 1–13.

5. Invited review: Overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits;C Egger-Danner;Animal,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3