Abstract
This paper takes the specific environment covered by vegetation as the research object, carries out modeling and analysis, takes the large-scale fading model of wireless channel as the basis of data processing, researches the transmission law of electromagnetic wave in a typical vegetation environment, which can be divided into four situations. The signal attenuation in each case is theoretically derived and numerically simulated. From the view point of supporting vegetation environment channel, the large-scale channel measurement system is built to meet the actual needs, such as bandwidth, frequency, vegetation coverage, etc. the final vegetation environment channel model under the large-scale fading model is obtained. The results show that the path gain of four scenarios respectively are 81.3 dB, 36.5 dB, 1.6 dB, 1.5 dB, the value of path gain index is within the range of 2~3.5, four scenarios shadow fading standard deviation values are 7.1, 4.8, 10.1, 9.2, reflects the change of received power at the point caused by random factors such as reflection, absorption and scattering. In addition, the proposed channel model improves the gain about 15% compared with the tradition SUI model within vegetation coverage scene. The design process of the proposed model is carried out in the order of "studied the existing foundation → analyzed the existing problems → proposed the optimization scheme → simulation and verification results → actual measurement system". The advantage of paper’s method is that, when the signal frequency, transceiver distance, antenna height and vegetation environment characteristic parameters are given, the statistical analysis results of wireless channel data are obtained. The purpose of the proposed work establishes a signal propagation prediction model under the vegetation environment, realizes a theoretical basis for channel simulation, and provides the basis of anti-fading technologies.
Funder
National Key R&D Program of China
Publisher
Public Library of Science (PLoS)
Reference32 articles.
1. Parabolic equation model for wave propagation in forest environments;Guo Jianyan;Chinese Journal of Radio Science,2007
2. Measuring and modelling the complex-permittivity of hemp plant (Cannabis Sativa) at X band for microwave remote sensing;Genc Abdullah;Journal of Electromagnetic Waves and Applications,2021
3. Dual-Polarized Highly Folded Bowtie Antenna with Slotted Self-Grounded Structure for Sub-6 GHz 5G Applications;A Mohammad;IEEE Transactions on Antennas and Propagation,2022
4. Noise reduction and atmospheric correction for coastal applications of Landsat Thematic Mapper imagery;M. Zhang;Remote Sensing of Environment,1999
5. Analysis of propagation and diffraction rule of radiofrequency signal in man-made forest;Xu Yunjie;Transactions of the Chinese Society of Agricultural Engineering,2015
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献