The study of the separation and deposition of dredging soil slurry under physical disturbance

Author:

Yuan Yan-zhaoORCID

Abstract

Most existing research uses experimental designs for testing, which cannot efficiently analyse the migration and sorting rules of particles in the disturbed slurry. Therefore, based on the fluidized bed flow film theory, a slurry flow film structure system is established according to the disturbance state of the fluid. On this basis, the particle size and distribution law of the disturbing force formed by slurry disturbance are analyzed, and the calculation model of single particle lift in the flowing film is also analyzed. On this basis, using Markov probability model, the probability of particle lifting and sorting between layers is theoretically deduced. Then, according to the particle ratio of the original mud, the settlement gradation of the particles in the disturbance is analyzed. It can also predict the separation degree of particle in natural turbulence, fluidized beds, and sludge mechanical dewatering. Finally, according to the particle flow software PFC (Particle Flow Code), the main influencing parameters (disturbing force and gradation) were verified and analyzed. The results show that the particle flow simulation results are in good agreement with the calculation results. The model of slurry membrane separation proposed in this paper can provide a basis for studying the mechanism of slurry disturbance separation and particle deposition.

Funder

Henan Provincial Science and Technology Research Project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3