Ectodomain shedding of EGFR ligands serves as an activation readout for TRP channels

Author:

Tatsumi Manae,Kishi Takayuki,Ishida Satoru,Kawana HirokiORCID,Uwamizu Akiharu,Ono Yuki,Kawakami Kouki,Aoki Junken,Inoue AsukaORCID

Abstract

Transient receptor potential (TRP) channels are activated by various extracellular and intracellular stimuli and are involved in many physiological events. Because compounds that act on TRP channels are potential candidates for therapeutic agents, a simple method for evaluating TRP channel activation is needed. In this study, we demonstrated that a transforming growth factor alpha (TGFα) shedding assay, previously developed for detecting G-protein–coupled receptor (GPCR) activation, can also detect TRP channel activation. This assay is a low-cost, easily accessible method that requires only an absorbance microplate reader. Mechanistically, TRP-channel-triggered TGFα shedding is achieved by both of a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and 17 (ADAM17), whereas the GPCR-induced TGFα shedding response depends solely on ADAM17. This difference may be the result of qualitative or quantitative differences in intracellular Ca2+ kinetics between TRP channels and GPCRs. Use of epidermal growth factor (EGF) and betacellulin (BTC), substrates of ADAM10, improved the specificity of the shedding assay by reducing background responses mediated by endogenously expressed GPCRs. This assay for TRP channel measurement will not only facilitate the high-throughput screening of TRP channel ligands but also contribute to understanding the roles played by TRP channels as regulators of membrane protein ectodomain shedding.

Funder

Japan Society for the Promotion of Science London

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Takeda Science Foundation

Uehara Memorial Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3