Metabolically active bacteria detected with click chemistry in low organic matter rainwater

Author:

Guillemette RyanORCID,Harwell Matthew C.ORCID,Brown Cheryl A.ORCID

Abstract

Rain contains encapsulated bacteria that can be transported over vast distances during relatively short periods of time. However, the ecological significance of bacteria in “precontact” rainwater–rainwater prior to contact with non-atmospheric surfaces–remains relatively undefined given the methodological challenges of studying low-abundance microbes in a natural assemblage. Here, we implement single-cell “click” chemistry in a novel application to detect the protein synthesis of bacteria in precontact rainwater samples as a measure of metabolic activity. Using epifluorescence microscopy, we find approximately 103–104 bacteria cells mL-1 with up to 7.2% of the observed cells actively synthesizing protein. Additionally, our measurement of less than 30 μM total organic carbon in the samples show that some rainwater bacteria can metabolize substrates in very low organic matter conditions, comparable to extremophiles in the deep ocean. Overall, our results raise new questions for the field of rainwater microbiology and may help inform efforts to develop quantitative microbial risk assessments for the appropriate use of harvested rainwater.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3