Transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human

Author:

Kim Hyun-Chul,Lee Wonhye,Weisholtz Daniel S.,Yoo Seung-SchikORCID

Abstract

The effects of transcranial focused ultrasound (FUS) stimulation of the primary somatosensory cortex and its thalamic projection (i.e., ventral posterolateral nucleus) on the generation of electroencephalographic (EEG) responses were evaluated in healthy human volunteers. Stimulation of the unilateral somatosensory circuits corresponding to the non-dominant hand generated EEG evoked potentials across all participants; however, not all perceived stimulation-mediated tactile sensations of the hand. These FUS-evoked EEG potentials (FEP) were observed from both brain hemispheres and shared similarities with somatosensory evoked potentials (SSEP) from median nerve stimulation. Use of a 0.5 ms pulse duration (PD) sonication given at 70% duty cycle, compared to the use of 1 and 2 ms PD, elicited more distinctive FEP peak features from the hemisphere ipsilateral to sonication. Although several participants reported hearing tones associated with FUS stimulation, the observed FEP were not likely to be confounded by the auditory sensation based on a separate measurement of auditory evoked potentials (AEP) to tonal stimulation (mimicking the same repetition frequency as the FUS stimulation). Off-line changes in resting-state functional connectivity (FC) associated with thalamic stimulation revealed that the FUS stimulation enhanced connectivity in a network of sensorimotor and sensory integration areas, which lasted for at least more than an hour. Clinical neurological evaluations, EEG, and neuroanatomical MRI did not reveal any adverse or unintended effects of sonication, attesting its safety. These results suggest that FUS stimulation may induce long-term neuroplasticity in humans, indicating its neurotherapeutic potential for various neurological and neuropsychiatric conditions.

Funder

The Translational Research Institute for Space Health through National Aeronautics and Space Administration (NASA) Cooperative Agreement

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3