Abstract
The surface effects on running biomechanics have been greatly investigated. However, the effects on rearfoot strike runners remain unknown. The purpose of this study was to investigate the effects of surfaces on the running kinematics, kinetics, and lower-limb stiffness of habitual rearfoot strikers. Thirty healthy male runners were recruited to run at 3.3 ± 0.2 m/s on a customized runway covered with three different surfaces (artificial grass, synthetic rubber, or concrete), and their running kinematics, kinetics, and lower-limb stiffness were compared. Differences among the three surfaces were examined using statistical parametric mapping and one-way repeated-measure analysis of variance. There were no statistical differences in the lower-limb joint motion, vertical ground reaction force (GRF), loading rates, and lower-limb stiffness when running on the three surfaces. The braking force (17%–36% of the stance phase) and mediolateral GRF were decreased when running on concrete surface compared with running on the other two surfaces. The moments of ankle joint in all three plane movement and frontal plane hip and knee joints were increased when running on concrete surface. Therefore, habitual rearfoot strikers may expose to a higher risk of running-related overuse injuries when running on a harder surface.
Funder
National Natural Science Foundation of China
Research Project of Shanghai University of Sport
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献