Real-time scene classification of unmanned aerial vehicles remote sensing image based on Modified GhostNet

Author:

Shen Xiaole,Wang Hongfeng,Wei Biyun,Cao JinzhouORCID

Abstract

Unmanned Aerial Vehicles (UAVs) play an important role in remote sensing image classification because they are capable of autonomously monitoring specific areas and analyzing images. The embedded platform and deep learning are used to classify UAV images in real-time. However, given the limited memory and computational resources, deploying deep learning networks on embedded devices and real-time analysis of ground scenes still has challenges in actual applications. To balance computational cost and classification accuracy, a novel lightweight network based on the original GhostNet is presented. The computational cost of this network is reduced by changing the number of convolutional layers. Meanwhile, the fully connected layer at the end is replaced with the fully convolutional layer. To evaluate the performance of the Modified GhostNet in remote sensing scene classification, experiments are performed on three public datasets: UCMerced, AID, and NWPU-RESISC. Compared with the basic GhostNet, the Floating Point Operations (FLOPs) are reduced from 7.85 MFLOPs to 2.58 MFLOPs, the memory is reduced from 16.40 MB to 5.70 MB, and the predicted time is improved by 18.86%. Our modified GhostNet also increases the average accuracy (Acc) (4.70% in AID experiments, 3.39% in UCMerced experiments). These results indicate that our Modified GhostNet can improve the performance of lightweight networks for scene classification and effectively enable real-time monitoring of ground scenes.

Funder

Shenzhen Science and Technology Program

National Natural Science Foundation of China

the 5th College-enterprise Cooperation Project of Shenzhen Technology University

Guangdong Science and Technology Strategic Innovation Fund

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3