Rational therapeutic targets with biomolecular liquid-liquid phase separation regulating synergy: A pan-cancer analysis

Author:

Sun Si,Wang Wenwen,Li GuoqingORCID,Xiao Man,Peng Minggang,Cai Jing,Wang Zehua,Yang Qiang,He XiaoqiORCID

Abstract

Liquid-liquid phase separation (LLPS) is characterized as an ubiquitous framework for diverse biological processes including carcinogenesis and cancer progression. While targeting cancer from perspective of LLPS offers an opportunity to drug the conventionally undruggables with cancer-driving potential, the therapeutic value of cancer associated LLPS (CAL) proteins remains elusive. Here, we report the genomic landscape, prognostic relevance, immune-infiltration association, down-stream pathway alteration and small molecular responsiveness of CAL protein-coding gene signatures based on protein-coding associated mutations and transcriptional abundance in pan-cancer. Correlations of CAL protein-coding associated mutations and transcriptional abundances to overall survival and progression-free survival were observed in an array of cancers and further characterized by differential survival outcomes between patients with intrinsic disordered region (IDR) enriched and non-IDR enriched mutations in endometrial cancer. Altered signaling pathways and universal pattern of immune infiltrates on account of CAL protein-coding associated gene-set mutations involved key components of oncogenesis in various cancer types and well established therapeutic targets including MAPK signaling pathway and implied an inflamed tumor immunity that might be highly responsive to immunotherapy. LLPS inhibitor enhanced cytotoxicity of cisplatin/paclitaxel in selective cancer cell lines. These findings provide preliminary evidences for rational chemo-, targeted- and immuno-therapeutic innovation with LLPS regulating synergy.

Funder

National Natural Science Foundation of China

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference42 articles.

1. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study;HJ Lenz;J Clin Oncol,2021

2. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer;YY Janjigian;Nature,2021

3. Circulating tumor DNA-guided treatment with pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer: a phase 2 trial;Y Nakamura;Nat Med,2021

4. PARP Inhibitors for Cancer Therapy;KY Lin;Cell,2017

5. The repertoire of mutational signatures in human cancer;LB Alexandrov;Nature,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3