Abstract
Our study analyzed the impact of African swine fever (ASF) news on the Korean meat market using sentiment analysis. We applied a neural network language model (NNLM) to generate a sentiment index indicating whether the news had a positive or negative impact on consumer expectations. We analyzed 24,143 news articles to estimate the impulse responses of meat price variables to sentiment shocks. Our study contributes significantly to agricultural economics as it applies NNLM to generate a sentiment index. The empirical results indicated that ASF news sentiment has a substantial impact on meat prices in Korea, and there is evidence of substitution effects among different types of meat. ASF news has a positive impact on the price of pork, negative effects on beef and chicken prices, and a greater impact on the price of chicken than beef. The findings imply that the effect of ASF news on demand outweighs its impact on supply in the pork market, whereas the effect on supply surpasses the effect on demand in the beef and chicken market. We believe our methods and results will inspire discussions among applied economists studying consumer behavior in this specific market and could encourage the application of big data analysis to the agricultural economy.
Funder
Ministry of Education of the Republic of Korea and the National Research Foundation of Korea
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献