Nuances in intensity deviant asymmetric responses as a biomarker for tinnitus

Author:

Yukhnovich Ekaterina A.ORCID,Alter Kai,Sedley William

Abstract

We attempted to replicate a potential tinnitus biomarker in humans based on the Sensory Precision Integrative Model of Tinnitus called the Intensity Mismatch Asymmetry. A few advances on the design were also included, including tighter matching of participants for gender, and a control stimulus frequency of 1 kHz to investigate whether any differences between control and tinnitus groups are specific to the tinnitus frequency or domain-general. The expectation was that there would be asymmetry in the MMN responses between tinnitus and control groups at the tinnitus frequency, but not at the control frequency, where the tinnitus group would have larger, more negative responses to upward deviants than downward deviants, and the control group would have the opposite pattern or lack of a deviant direction effect. However, no significant group differences were found. There was a striking difference in response amplitude to control frequency stimuli compared to tinnitus frequency stimuli, which could be an intrinsic quality of responses to these frequencies or could reflect high frequency hearing loss in the sample. Additionally, the upward deviants elicited stronger MMN responses in both groups at tinnitus frequency, but not at the control frequency. Factors contributing to these discrepant results at the tinnitus frequency could include hyperacusis, attention, and wider contextual effects of other frequencies used in the experiment (i.e. the control frequency in other blocks).

Funder

Masonic Charitable Foundation

Royal National Institute for Deaf People

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference45 articles.

1. Exposing pathological sensory predictions in tinnitus using auditory intensity deviant evoked responses;W Sedley;The Journal of Neuroscience,2019

2. The mechanisms of tinnitus: Perspectives from human functional neuroimaging;P Adjamian;Hearing Research,2009

3. Pathophysiology of Subjective Tinnitus: Triggers and Maintenance;HF Haider;Front Neurosci,2018

4. The neuroscience of tinnitus;JJ Eggermont;Trends in Neurosciences,2004

5. Tinnitus: perspectives from human neuroimaging;AB Elgoyhen;Nature Reviews Neuroscience,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3