Abstract
Background
The incorporation of information from clinical narratives is critical for computational phenotyping. The accurate interpretation of clinical terms highly depends on their associated context, especially the corresponding clinical section information. However, the heterogeneity across different Electronic Health Record (EHR) systems poses challenges in utilizing the section information.
Objectives
Leveraging the eMERGE heart failure (HF) phenotyping algorithm, we assessed the heterogeneity quantitatively through the performance comparison of machine learning (ML) classifiers which map clinical sections containing HF-relevant terms across different EHR systems to standard sections in Health Level 7 (HL7) Clinical Document Architecture (CDA).
Methods
We experimented with both random forest models with sentence-embedding features and bidirectional encoder representations from transformers models. We trained MLs using an automated labeled corpus from an EHR system that adopted HL7 CDA standard. We assessed the performance using a blind test set (n = 300) from the same EHR system and a gold standard (n = 900) manually annotated from three other EHR systems.
Results
The F-measure of those ML models varied widely (0.00–0.91%), indicating MLs with one tuning parameter set were insufficient to capture sections across different EHR systems. The error analysis indicates that the section does not always comply with the corresponding standardized sections, leading to low performance.
Conclusions
We presented the potential use of ML techniques to map the sections containing HF-relevant terms in multiple EHR systems to standard sections. However, the findings suggested that the quality and heterogeneity of section structure across different EHRs affect applications due to the poor adoption of documentation standards.
Funder
National Institutes of Health
National Institute on Aging
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Clinical Text Classification in Healthcare: Leveraging BERT for NLP;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29