Not getting in too deep: A practical deep learning approach to routine crystallisation image classification

Author:

Milne JamieORCID,Qian ChenORCID,Hargreaves DavidORCID,Wang YinhaiORCID,Wilson JulieORCID

Abstract

Using a relatively small training set of ~16 thousand images from macromolecular crystallisation experiments, we compare classification results obtained with four of the most widely-used convolutional deep-learning network architectures that can be implemented without the need for extensive computational resources. We show that the classifiers have different strengths that can be combined to provide an ensemble classifier achieving a classification accuracy comparable to that obtained by a large consortium initiative. We use eight classes to effectively rank the experimental outcomes, thereby providing detailed information that can be used with routine crystallography experiments to automatically identify crystal formation for drug discovery and pave the way for further exploration of the relationship between crystal formation and crystallisation conditions.

Funder

Engineering and Physical Sciences Research Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference36 articles.

1. Advancements in macromolecular crystallography: From past to present;I Rathore;Emerging Topics in Life Sciences,2021

2. A drunken search in crystallization space;VJ Fazio;Acta Crystallographica Section F: Structural Biology Communications,2014

3. Data and Diversity Driven Development of a Shotgun Crystallisation Screen using the Protein Data Bank;G Abrahams;bioRxiv,2021

4. The MORPHEUS protein crystallization screen;F Gorrec;Journal of applied crystallography,2009

5. Towards rationalization of crystallization screening for small-to medium-sized academic laboratories: the PACT/JCSG+ strategy;J Newman;Acta Crystallographica Section D: Biological Crystallography,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3