Predicting areas important for ecological connectivity throughout Canada

Author:

Pither RichardORCID,O’Brien Paul,Brennan AngelaORCID,Hirsh-Pearson KristenORCID,Bowman Jeff

Abstract

Governments around the world have acknowledged that urgent action is needed to conserve and restore ecological connectivity to help reverse the decline of biodiversity. In this study we tested the hypothesis that functional connectivity for multiple species can be estimated across Canada using a single, upstream connectivity model. We developed a movement cost layer with cost values assigned using expert opinion to anthropogenic land cover features and natural features based on their known and assumed effects on the movement of terrestrial, non-volant fauna. We used Circuitscape to conduct an omnidirectional connectivity analysis for terrestrial landscapes, in which the potential contribution of all landscape elements to connectivity were considered and where source and destination nodes were independent of land tenure. Our resulting map of mean current density provided a seamless estimate of movement probability at a 300 m resolution across Canada. We tested predictions in our map using a variety of independently collected wildlife data. We found that GPS data for individual caribou, wolves, moose, and elk that traveled longer distances in western Canada were all significantly correlated with areas of high current densities. The frequency of moose roadkill in New Brunswick was also positively associated with current density, but our map was not able to predict areas of high road mortality for herpetofauna in southern Ontario. The results demonstrate that an upstream modelling approach can be used to characterize functional connectivity for multiple species across a large study area. Our national connectivity map can help governments in Canada prioritize land management decisions to conserve and restore connectivity at both national and regional scales.

Funder

Environment and Climate Change Canada

Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3