Study on mechanical properties of interbedded rock masses with microcrack based on thermal-mechanical coupling

Author:

Qiu Liewang,Xie LiangfuORCID,Qin Yongjun,Wang Jianhu,Liu Shan,Qian Jiangu

Abstract

The mechanical properties of deep rock masses are significantly influenced by temperature and other factors. The effect of temperature on the strength of deep rock masses will pose a serious challenge to deep resource exploitation and engineering construction. In this paper, the thermal-mechanical coupling calculation model is established by particle flow code (PFC2D) to study the uniaxial compression response of rock masses with microcracks after temperature load. The strength of failure, microcracks, and strain was analyzed. The results show that: (i) When the soft rock thickness ratio Hs/H < 0.5, the displacement caused by the applied temperature is concentrated at the structural plane, and the contact force is concentrated at the end of the initial microcrack. When Hs/H ≥ 0.5, the displacement caused by the applied temperature is concentrated on both sides of the initial microcrack, and the contact force is concentrated in the hard rock area. (ii) The number of microcracks decreases with the increase of soft rock thickness under different working conditions. When the soft rock thickness ratio Hs/H < 0.5, the relationship curve between the number of microcracks and the vertical strain shows two stages of change. When Hs/H ≥ 0.5, the relationship curve between the number of cracks and the vertical strain changes shows three stages of change. (iii) When the soft rock thickness ratio Hs/H < 0.5, the failure strength decreases with the increase of soft rock thickness ratio at T = 100°C and 200°C. When T = 300°C and 400°C, the failure strength decreased first and then increased. When Hs/H ≥ 0.5, the failure strength increases with the increase of soft rock thickness at T = 200°C, 300°C, and 400°C. At T = 100°C, the failure strength decreases with the increase of soft rock thickness.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3