Silencing of dentate gyrus inhibits mossy fiber sprouting and prevents epileptogenesis through NDR2 kinase in pentylenetetrazole kindling rat model of TLE

Author:

Zhang Chen,He Zixian,Tan Zheren,Tian FafaORCID

Abstract

Epileptogenesis is a potential process. Mossy fiber sprouting (MFS) contributes to epileptogenesis. Silencing of the dentate gyrus (DG) suppressed spontaneous seizures model of epilepsy and hyperactivity of granule cells resulted in MFS in vitro. However, the role of DG’s excitability in epileptogenesis have not yet been well explored, and underlying mechanisms has not been elucidated. Using chemical genetics, we studied whether MFS and epileptogenesis could be modulated by silencing of DG in the PTZ kindling rat model of epilepsy. MFS and protein expression was measured by Timm staining, Western blotting, and Immunofluorescence. Previous studies demonstrated that MFS and epileptogenesis could be modulated by a regulator of axonal growth (e.g. RGMa, PTEN). NDR2 kinase regulate neuronal polarity and prevents the formation of supernumerary axons in the hippocampus. We experimentally confirmed chemogenetic inhibition in DG resulted in decreased MFS and NDR2 expression, and alleviated epileptogenesis. Furthermore, our results showed that injection of AVV vector expressing NDR2 into DG induced upregulation of NDR2 in the hippocampus, and over expression of NDR2 in the hippocampus promote MFS and block protective effect of chemogenetic silencing of DG on epileptogenesis. Overall, we concluded that silencing of DG inhibits MFS and prevents epileptogenesis through NDR2 in the hippocampus in the PTZ kindling rat model of TLE, thereby providing a possible strategy to prevent epileptogenesis.

Funder

National Natural Science Foundation of China

Key Technologies Research and Development Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3