Abstract
Scalp Electroencephalography (EEG) is one of the most popular noninvasive modalities for studying real-time neural phenomena. While traditional EEG studies have focused on identifying group-level statistical effects, the rise of machine learning has prompted a shift in computational neuroscience towards spatio-temporal predictive analyses. We introduce a novel open-source viewer, the EEG Prediction Visualizer (EPViz), to aid researchers in developing, validating, and reporting their predictive modeling outputs. EPViz is a lightweight and standalone software package developed in Python. Beyond viewing and manipulating the EEG data, EPViz allows researchers to load a PyTorch deep learning model, apply it to EEG features, and overlay the output channel-wise or subject-level temporal predictions on top of the original time series. These results can be saved as high-resolution images for use in manuscripts and presentations. EPViz also provides valuable tools for clinician-scientists, including spectrum visualization, computation of basic data statistics, and annotation editing. Finally, we have included a built-in EDF anonymization module to facilitate sharing of clinical data. Taken together, EPViz fills a much needed gap in EEG visualization. Our user-friendly interface and rich collection of features may also help to promote collaboration between engineers and clinicians.
Funder
National Science Foundation
National Institutes of Health
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献