Salivary gland LAMP3 mRNA expression is a possible predictive marker in the response to hydroxychloroquine in Sjögren’s disease

Author:

Nakamura HiroyukiORCID,Tanaka Tsutomu,Ji Youngmi,Zheng Changyu,Afione Sandra A.,Warner Blake M.,Oliveira Fabiola Reis,Motta Ana Carolina F.,Rocha Eduardo M.,Noguchi Masayuki,Atsumi Tatsuya,Chiorini John A.

Abstract

Hydroxychloroquine (HCQ) is a lysosomotropic agent that is commonly used for treating Sjögren’s disease (SjD). However, its efficacy is controversial because of the divergent response to the drug among patients. In a subgroup of SjD patients, lysosome-associated membrane protein 3 (LAMP3) is elevated in expression in the salivary glands and promotes lysosomal dysregulation and lysosome-dependent apoptotic cell death. In this study, chloroquine (CQ) and its derivative HCQ were tested for their ability to prevent LAMP3-induced apoptosis, in vitro and on a mouse model of SjD. In addition, efficacy of HCQ treatment was retrospectively compared between high LAMP3 mRNA expression in minor salivary glands and those with LAMP3 mRNA levels comparable with healthy controls. Study results show that CQ treatment stabilized the lysosomal membrane in LAMP3-overexpressing cells via deactivation of cathepsin B, resulting in decreased apoptotic cell death. In mice with established SjD-like phenotype, HCQ treatment also significantly decreased apoptotic cell death and ameliorated salivary gland hypofunction. Retrospective analysis of SjD patients found that HCQ tended to be more effective in improving disease activity index, symptom severity and hypergammaglobulinemia in patients with high LAMP3 expression compared those with normal LAMP3 expression. Taken together, these findings suggested that by determining salivary gland LAMP3 mRNA level, a patient’s response to HCQ treatment could be predicted. This finding may provide a novel strategy for guiding the development of more personalized medicine for SjD.

Funder

NIDCR

São Paulo Research Foundation

National Council for Scientific and Technological Development

Takeda Science Foundation Research Fellowship

JSPS Research Fellowship for Japanese Biomedical and Behavioral Researchers at the NIH

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3