Rational social distancing in epidemics with uncertain vaccination timing

Author:

Schnyder Simon K.ORCID,Molina John J.,Yamamoto Ryoichi,Turner Matthew S.

Abstract

During epidemics people may reduce their social and economic activity to lower their risk of infection. Such social distancing strategies will depend on information about the course of the epidemic but also on when they expect the epidemic to end, for instance due to vaccination. Typically it is difficult to make optimal decisions, because the available information is incomplete and uncertain. Here, we show how optimal decision-making depends on information about vaccination timing in a differential game in which individual decision-making gives rise to Nash equilibria, and the arrival of the vaccine is described by a probability distribution. We predict stronger social distancing the earlier the vaccination is expected and also the more sharply peaked its probability distribution. In particular, equilibrium social distancing only meaningfully deviates from the no-vaccination equilibrium course if the vaccine is expected to arrive before the epidemic would have run its course. We demonstrate how the probability distribution of the vaccination time acts as a generalised form of discounting, with the special case of an exponential vaccination time distribution directly corresponding to regular exponential discounting.

Funder

Japan Society for the Promotion of Science London

Kyoto University

Leverhulme Trust

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference62 articles.

1. Historical comparisons of morbidity and mortality for vaccine-preventable diseases in the United States;SW Roush;Journal of the American Medical Association,2007

2. The impacts of SARS-CoV-2 vaccine dose separation and targeting on the COVID-19 epidemic in England;MJ Keeling;Nature Communications,2023

3. Measuring voluntary and policy-induced social distancing behavior during the COVID-19 pandemic;Y Yan;Proceedings of the National Academy of Sciences of the United States of America,2021

4. Statistical physics of vaccination;Z Wang;Physics Reports,2016

5. Game theoretic modelling of infectious disease dynamics and intervention methods: a review;SL Chang;Journal of Biological Dynamics,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3