Oocyte-specific Wee1-like protein kinase 2 is dispensable for fertility in mice

Author:

Nozawa Kaori,Liao Zian,Satouh YuhkohORCID,Geng Ting,Ikawa MasahitoORCID,Monsivais DianaORCID,Matzuk Martin M.ORCID

Abstract

Wee1-like protein kinase 2 (WEE2) is an oocyte-specific protein tyrosine kinase involved in the regulation of oocyte meiotic arrest in humans. As such, it has been proposed as a candidate for non-hormonal female contraception although pre-clinical models have not been reported. Therefore, we developed two novel knockout mouse models using CRISPR/Cas9 to test loss-of-function of Wee2 on female fertility. A frameshift mutation at the Wee2 translation start codon in exon 2 had no effect on litter size, litter production, or the ability of oocytes to maintain prophase I arrest. Because of the lack of a reproductive phenotype, we additionally generated a Wee2 allele with a large deletion by removing all coding exons. While there was no difference in the total number of litters produced, homozygous Wee2 female knockout mice with the larger deletion produced fewer pups than heterozygous littermates. Furthermore, there was no difference for key reproductive parameters measured in the mouse models, including ovarian weight, number of ovulated oocytes, or oocytes that underwent in vitro maturation. Therefore, as loss of Wee2 in mice shows only minor effects on overall fecundity, contraceptive development with WEE2 should consider exploiting alternative properties such as gain-of-function or protein-protein interactions, as Wee2 loss-of-function is likely complicated by biological redundancies with other proteins co-expressed in oocytes.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Burroughs Wellcome Fund

Japan Research Promotion Society for Cardiovascular Diseases

Lalor Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3