Tissue-specific reprogramming of glutamine metabolism maintains tolerance to sepsis

Author:

Leitner Brooks P.ORCID,Lee Won D.ORCID,Zhu Wanling,Zhang Xinyi,Gaspar Rafael C.,Li Zongyu,Rabinowitz Joshua D.,Perry Rachel J.ORCID

Abstract

Reprogramming metabolism is of great therapeutic interest for reducing morbidity and mortality during sepsis-induced critical illness. Disappointing results from randomized controlled trials targeting glutamine and antioxidant metabolism in patients with sepsis have begged a deeper understanding of the tissue-specific metabolic response to sepsis. The current study sought to fill this gap. We analyzed skeletal muscle transcriptomics of critically ill patients, versus elective surgical controls, which revealed reduced expression of genes involved in mitochondrial metabolism and electron transport, with increases in glutathione cycling, glutamine, branched chain, and aromatic amino acid transport. We then performed untargeted metabolomics and 13C isotope tracing to analyze systemic and tissue specific metabolic phenotyping in a murine polymicrobial sepsis model. We found an increased number of correlations between the metabolomes of liver, kidney, and spleen, with loss of correlations between the heart and quadriceps and all other organs, pointing to a shared metabolic signature within vital abdominal organs, and unique metabolic signatures for muscles during sepsis. A lowered GSH:GSSG and elevated AMP:ATP ratio in the liver underlie the significant upregulation of isotopically labeled glutamine’s contribution to TCA cycle anaplerosis and glutamine-derived glutathione biosynthesis; meanwhile, the skeletal muscle and spleen were the only organs where glutamine’s contribution to the TCA cycle was significantly suppressed. These results highlight tissue-specific mitochondrial reprogramming to support liver energetic demands and antioxidant synthesis, rather than global mitochondrial dysfunction, as a metabolic consequence of sepsis.

Funder

National Institutes of Health

Yale University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference70 articles.

1. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021;L. Evans;Intensive Care Medicine,2021

2. Post-sepsis syndrome–an evolving entity that afflicts survivors of sepsis;Z. Mostel;Molecular Medicine,2019

3. Exploring the pathophysiology of post-sepsis syndrome to identify therapeutic opportunities;E.C. van der. Slikke;EBioMedicine,2020

4. A review of micronutrients in sepsis: the role of thiamine, l-carnitine, vitamin C, selenium and vitamin D;J.B. Belsky;Nutrition Research Reviews,2018

5. Metabolic response of muscle to alanine, glutamine, and valine supplementation during severe illness;D. Gore;Journal of Parenteral and Enteral Nutrition,2003

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3