Causal modelling demonstrates metabolic power is largely affected by gait kinematics and motor control in children with cerebral palsy

Author:

Gill Pavreet K.ORCID,Steele Katherine M.ORCID,Donelan J. Maxwell,Schwartz Michael H.ORCID

Abstract

Metabolic power (net energy consumed while walking per unit time) is, on average, two-to-three times greater in children with cerebral palsy (CP) than their typically developing peers, contributing to greater physical fatigue, lower levels of physical activity and greater risk of cardiovascular disease. The goal of this study was to identify the causal effects of clinical factors that may contribute to high metabolic power demand in children with CP. We included children who 1) visited Gillette Children’s Specialty Healthcare for a quantitative gait assessment after the year 2000, 2) were formally diagnosed with CP, 3) were classified as level I-III under the Gross Motor Function Classification System and 4) were 18 years old or younger. We created a structural causal model that specified the assumed relationships of a child’s gait pattern (i.e., gait deviation index, GDI) and common impairments (i.e., dynamic and selective motor control, strength, and spasticity) with metabolic power. We estimated causal effects using Bayesian additive regression trees, adjusting for factors identified by the causal model. There were 2157 children who met our criteria. We found that a child’s gait pattern, as summarized by the GDI, affected metabolic power approximately twice as much as the next largest contributor. Selective motor control, dynamic motor control, and spasticity had the next largest effects. Among the factors we considered, strength had the smallest effect on metabolic power. Our results suggest that children with CP may benefit more from treatments that improve their gait pattern and motor control than treatments that improve spasticity or strength.

Funder

Natural Sciences and Engineering Research Council of Canada

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3