Learning important common data elements from shared study data: The All of Us program analysis

Author:

Mayer Craig S.ORCID,Huser Vojtech

Abstract

There are many initiatives attempting to harmonize data collection across human clinical studies using common data elements (CDEs). The increased use of CDEs in large prior studies can guide researchers planning new studies. For that purpose, we analyzed the All of Us (AoU) program, an ongoing US study intending to enroll one million participants and serve as a platform for numerous observational analyses. AoU adopted the OMOP Common Data Model to standardize both research (Case Report Form [CRF]) and real-world (imported from Electronic Health Records [EHRs]) data. AoU standardized specific data elements and values by including CDEs from terminologies such as LOINC and SNOMED CT. For this study, we defined all elements from established terminologies as CDEs and all custom concepts created in the Participant Provided Information (PPI) terminology as unique data elements (UDEs). We found 1 033 research elements, 4 592 element-value combinations and 932 distinct values. Most elements were UDEs (869, 84.1%), while most CDEs were from LOINC (103 elements, 10.0%) or SNOMED CT (60, 5.8%). Of the LOINC CDEs, 87 (53.1% of 164 CDEs) originated from previous data collection initiatives, such as PhenX (17 CDEs) and PROMIS (15 CDEs). On a CRF level, The Basics (12 of 21 elements, 57.1%) and Lifestyle (10 of 14, 71.4%) were the only CRFs with multiple CDEs. On a value level, 61.7% of distinct values are from an established terminology. AoU demonstrates the use of the OMOP model for integrating research and routine healthcare data (64 elements in both contexts), which allows for monitoring lifestyle and health changes outside the research setting. The increased inclusion of CDEs in large studies (like AoU) is important in facilitating the use of existing tools and improving the ease of understanding and analyzing the data collected, which is more challenging when using study specific formats.

Funder

U.S. National Library of Medicine

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference15 articles.

1. Improving the value of clinical research through the use of Common Data Elements;J Sheehan;Clin Trials Lond Engl,2016

2. Analyzing Real-World Use of Research Common Data Elements;V Huser;AMIA Annu Symp Proc AMIA Symp,2018

3. National Institutes of Health (NIH) | National Institutes of Health (NIH)—All of Us [Internet]. [cited 2021 Nov 29]. https://allofus.nih.gov/

4. The “All of Us” Research Program;All of Us Research Program Investigators;N Engl J Med,2019

5. Implementation of Informatics to Support the NIH All of Us Research Program in a Healthcare Provider Organization;SP Turner;AMIA Jt Summits Transl Sci Proc AMIA Jt Summits Transl Sci,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3