Abstract
Manual image segmentation consumes time. An automatic and accurate method to segment multimodal brain tumors using context information rich three-dimensional medical images that can be used for clinical treatment decisions and surgical planning is required. However, it is a challenge to use deep learning to achieve accurate segmentation of medical images due to the diversity of tumors and the complex boundary interactions between sub-regions while limited computing resources hinder the construction of efficient neural networks. We propose a feature fusion module based on a hierarchical decoupling convolution network and an attention mechanism to improve the performance of network segmentation. We replaced the skip connections of U-shaped networks with a feature fusion module to solve the category imbalance problem, thus contributing to the segmentation of more complicated medical images. We introduced a global attention mechanism to further integrate the features learned by the encoder and explore the context information. The proposed method was evaluated for enhance tumor, whole tumor, and tumor core, achieving Dice similarity coefficient metrics of 0.775, 0.900, and 0.827, respectively, on the BraTS 2019 dataset and 0.800, 0.902, and 0.841, respectively on the BraTS 2018 dataset. The results show that our proposed method is inherently general and is a powerful tool for brain tumor image studies. Our code is available at: https://github.com/WSake/Feature-interaction-network-based-on-Hierarchical-Decoupled-Convolution.
Funder
the University Synergy Innovation Program of Anhui Province, China
Anhui Provincial universities outstanding young backbone talents domestic visiting study and Research project
the projects of Natural Science Foundation of Anhui Provincial Department of Education
Open Laboratory project of Huaibei Normal University
2022 National Innovation and Entrepreneurship Training Program for College Students
Publisher
Public Library of Science (PLoS)