Development of an image processing software for quantification of histological calcification staining images

Author:

Li XinruiORCID,Chan Yau Tsz,Jiang YangziORCID

Abstract

Quantification of the histological staining images gives important insights in biomedical research. In wet lab, it is common to have some stains off the target to become unwanted noisy stains during the generation of histological staining images. The current tools designed for quantification of histological staining images do not consider such situations; instead, the stained region is identified based on assumptions that the background is pure and clean. The goal of this study is to develop a light software named Staining Quantification (SQ) tool which could handle the image quantification job with features for removing a large amount of unwanted stains blended or overlaid with Region of Interest (ROI) in complex scenarios. The core algorithm was based on the method of higher order statistics transformation, and local density filtering. Compared with two state-of-art thresholding methods (i.e. Otsu’s method and Triclass thresholding method), the SQ tool outperformed in situations such as (1) images with weak positive signals and experimental caused dirty stains; (2) images with experimental counterstaining by multiple colors; (3) complicated histological structure of target tissues. The algorithm was developed in R4.0.2 with over a thousand in-house histological images containing Alizarin Red (AR) and Von Kossa (VK) staining, and was validated using external images. For the measurements of area and intensity in total and stained region, the average mean of difference in percentage between SQ and ImageJ were all less than 0.05. Using this as a criterion of successful image recognition, the success rate for all measurements in AR, VK and external validation batch were above 0.8. The test of Pearson’s coefficient, difference between SQ and ImageJ, and difference of proportions between SQ and ImageJ were all significant at level of 0.05. Our results indicated that the SQ tool is well established for automatic histological staining image quantification.

Funder

Ministry of Science and Technology of the People's Republic of China

Research Grants Council of the Hong Kong Special Administrative Region, China and the National Natural Science Foundation of China

Innovation and Technology Commission

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3