Modeled predictions of human-associated and fecal-indicator bacteria concentrations and loadings in the Menomonee River, Wisconsin using in-situ optical sensors

Author:

Lenaker Peter L.ORCID,Corsi Steven R.,De Cicco Laura A.,Olds Hayley T.,Dila Debra K.,Danz Mari E.,McLellan Sandra L.,Rutter Troy D.

Abstract

Human sewage contamination of waterways is a major issue in the United States and throughout the world. Models were developed for estimation of two human-associated fecal-indicator and three general fecal-indicator bacteria (HIB and FIB) using in situ optical field-sensor data for estimating concentrations and loads of HIB and FIB and the extent of sewage contamination in the Menomonee River in Milwaukee, Wisconsin. Three commercially available optical sensor platforms were installed into an unfiltered custom-designed flow-through system along with a refrigerated automatic sampler at the Menomonee River sampling location. Ten-minute optical sensor measurements were made from November 2017 to December 2018 along with the collection of 153 flow-weighted discrete water samples (samples) for HIB, FIB, dissolved organic carbon (DOC), and optical properties of water. Of those 153 samples, 119 samples were from event-runoff periods, and 34 were collected during low-flow periods. Of the 119 event-runoff samples, 43 samples were from event-runoff combined sewer overflow (CSO) influenced periods (event-CSO periods). Models included optical sensor measurements as explanatory variables with a seasonal variable as an interaction term. In some cases, separate models for event-CSO periods and non CSO-periods generally improved model performance, as compared to using all the data combined for estimates of FIB and HIB. Therefore, the CSO and non-CSO models were used in final estimations for CSO and non-CSO time periods, respectively. Estimated continuous concentrations for all bacteria markers varied over six orders of magnitude during the study period. The greatest concentrations, loads, and proportion of sewage contamination occurred during event-runoff and event-CSO periods. Comparison to water quality standards and microbial risk assessment benchmarks indicated that estimated bacteria levels exceeded recreational water quality criteria between 34 and 96% of the entire monitoring period, highlighting the benefits of high-frequency monitoring compared to traditional grab sample collection. The application of optical sensors for estimation of HIB and FIB markers provided a thorough assessment of bacterial presence and human health risk in the Menomonee River.

Funder

Milwaukee Metropolitan Sewerage District

U.S. Geological Survey

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3