Recurrent neural network modeling of multivariate time series and its application in temperature forecasting

Author:

Nketiah Edward AppauORCID,Chenlong Li,Yingchuan Jing,Aram Simon AppahORCID

Abstract

Temperature forecasting plays an important role in human production and operational activities. Traditional temperature forecasting mainly relies on numerical forecasting models to operate, which takes a long time and has higher requirements for the computing power and storage capacity of computers. In order to reduce computation time and improve forecast accuracy, deep learning-based temperature forecasting has received more and more attention. Based on the atmospheric temperature, dew point temperature, relative humidity, air pressure, and cumulative wind speed data of five cities in China from 2010 to 2015 in the UCI database, multivariate time series atmospheric temperature forecast models based on recurrent neural networks (RNN) are established. Firstly, the temperature forecast modeling of five cities in China is established by RNN for five different model configurations; secondly, the neural network training process is controlled by using the Ridge Regularizer (L2) to avoid overfitting and underfitting; and finally, the Bayesian optimization method is used to adjust the hyper-parameters such as network nodes, regularization parameters, and batch size to obtain better model performance. The experimental results show that the atmospheric temperature prediction error based on LSTM RNN obtained a minimum error compared to using the base models, and these five models obtained are the best models for atmospheric temperature prediction in the corresponding cities. In addition, the feature selection method is applied to the established models, resulting in simplified models with higher prediction accuracy.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference41 articles.

1. Forecasting The Air Temperature at a Weather Station Using Deep Neural Networks;SR Debneil;Procedia Comput Sci,2020

2. Performance Analysis of Weather Forecasting using Machine Learning Algorithms;I Intan;J Pekommas,2021

3. Impact of extreme weather conditions on European crop production in 2018;D Beillouin,2020

4. A Weather Forecast Model Accuracy Analysis and ECMWF Enhancement Proposal by Neural Network;J Frnda,2019

5. Artificial Intelligence Revolutionises Weather Forecast, Climate Monitoring and Decadal Prediction;S Dewitte;Remote Sens,2021

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3