Make a choice: A rapid strategy for minimizing peat in horticultural press pots substrates using a constrained mixture design and surface response approach

Author:

Sradnick AndréORCID,Werner Marie,Körner OliverORCID

Abstract

Peat is the most common used substrate in horticultural seedling production. To reduce peat in horticultural potted plant cultivation systems in general is an obstacle, even within the highly specialized horticultural industry. Next to soil-less cultivation systems as e.g. hydroponics, the horticultural industry is eagerly looking for suitable peat substitutes. The demands on these compounds are high, basically mimicking the physical properties of peat. A 100% replacement of peat for press-pots used in seedling production has not yet been found, and only mixes of peat and substrates exist. Several suitable peat substitutes with different properties are known, that usually are used as a share of a mixed peat-substitute substrate. A constrained mixture design was used to test substrates containing 50% v/v and 25% v/v peat and four peat substitutes (two composts and two wood fibers) for vegetable seedling production. By limiting the maximum quantities of each material to be added, there was no negative effect on the growth of Chinese cabbage (Brassica rapa subsp. pekinensis). This means a reduction in of peat to 25% v/v is possible without a change in substrate quality. The mixture design allowed a quick decision to be made regarding the most suitable peat-reduced mixtures. The surface response approach enabled the experimental results to be easily transferred to horticultural practices, additionally. This flexible and efficient method also allows the predictions to be used to meet specific crop management needs.

Funder

Bundesanstalt für Landwirtschaft und Ernährung

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference59 articles.

1. Peat extraction, trade and use in Europe: a material flow analysis;O Hirschler;Mires & Peat,2022

2. Growing media constituents used in the EU in 2013;G. Schmilewski;Acta Horticulturae

3. A life cycle assessment of Agaricus bisporus mushroom production in the USA;B Robinson;The International Journal of Life Cycle Assessment,2019

4. An overview of the progress and challenges of peatland restoration in Western Europe;R Andersen;Restoration Ecology,2017

5. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems;N. Gruda;Agronomy,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3