Transforming RNA-Seq gene expression to track cancer progression in the multi-stage early to advanced-stage cancer development

Author:

Livesey Michelle,Rossouw Sophia Catherine,Blignaut Renette,Christoffels Alan,Bendou HocineORCID

Abstract

Background Cancer progression can be tracked by gene expression changes that occur throughout early-stage to advanced-stage cancer development. The accumulated genetic changes can be detected when gene expression levels in advanced-stage are less variable but show high variability in early-stage. Normalizing advanced-stage expression samples with early-stage and clustering of the normalized expression samples can reveal cancers with similar or different progression and provide insight into clinical and phenotypic patterns of patient samples within the same cancer. Objective This study aims to investigate cancer progression through RNA-Seq expression profiles across the multi-stage process of cancer development. Methods RNA-sequenced gene expression of Diffuse Large B-cell Lymphoma, Lung cancer, Liver cancer, Cervical cancer, and Testicular cancer were downloaded from the UCSC Xena database. Advanced-stage samples were normalized with early-stage samples to consider heterogeneity differences in the multi-stage cancer progression. WGCNA was used to build a gene network and categorized normalized genes into different modules. A gene set enrichment analysis selected key gene modules related to cancer. The diagnostic capacity of the modules was evaluated after hierarchical clustering. Results Unnormalized RNA-Seq gene expression failed to segregate advanced-stage samples based on selected cancer cohorts. Normalization with early-stage revealed the true heterogeneous gene expression that accumulates across the multi-stage cancer progression, this resulted in well segregated cancer samples. Cancer-specific pathways were enriched in the normalized WGCNA modules. The normalization method was further able to stratify patient samples based on phenotypic and clinical information. Additionally, the method allowed for patient survival analysis, with the Cox regression model selecting gene MAP4K1 in cervical cancer and Kaplan-Meier confirming that upregulation is favourable. Conclusion The application of the normalization method further enhanced the accuracy of clustering of cancer samples based on how they progressed. Additionally, genes responsible for cancer progression were discovered.

Funder

South African Medical Research Council

National Research Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3