Human embryonic stem cells secrete macrophage migration inhibitory factor: A novel finding

Author:

Wei Yanzhao,Zheng Xiaohan,Huang Ting,Zhong Yuanji,Sun Shengtong,Wei Xufang,Liu Qibing,Wang Tan,Zhao ZhenqiangORCID

Abstract

Macrophage migration inhibitory factor (MIF) is expressed in a variety of cells and participates in important biological mechanisms. However, few studies have reported whether MIF is expressed in human Embryonic stem cells (ESCs) and its effect on human ESCs. Two human ESCs cell lines, H1 and H9 were used. The expression of MIF and its receptors CD74, CD44, CXCR2, CXCR4 and CXCR7 were detected by an immunofluorescence assay, RT-qPCR and western blotting, respectively. The autocrine level of MIF was measured via enzyme-linked immunosorbent assay. The interaction between MIF and its main receptor was investigated by co-immunoprecipitation and confocal immunofluorescence microscopy. Finally, the effect of MIF on the proliferation and survival of human ESCs was preliminarily explored by incubating cells with exogenous MIF, MIF competitive ligand CXCL12 and MIF classic inhibitor ISO-1. We reported that MIF was highly expressed in H1 and H9 human ESCs. MIF was positively expressed in the cytoplasm, cell membrane and culture medium. Several surprising results emerge. The autosecreted concentration of MIF was 22 ng/mL, which was significantly higher than 2 ng/mL-6 ng/mL in normal human serum, and this was independent of cell culture time and cell number. Human ESCs mainly expressed the MIF receptors CXCR2 and CXCR7 rather than the classical receptor CD74. The protein receptor that interacts with MIF on human embryonic stem cells is CXCR7, and no evidence of interaction with CXCR2 was found. We found no evidence that MIF supports the proliferation and survival of human embryonic stem cells. In conclusion, we first found that MIF was highly expressed in human ESCs and at the same time highly expressed in associated receptors, suggesting that MIF mainly acts in an autocrine form in human ESCs.

Funder

National Natural Science Foundation of China

Hainan Provincial Natural Science Foundation of China

Key Research and Development Project of Hainan Province

Scientific research projects in Colleges and Universities of Hainan Province of China

Project of Hainan Province Clinical Medical Center

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3