An Affordable phototherapy intensity meter using machine learning to improve the quality of care system for Hyperbilirubinemia in Indonesia

Author:

Kristian Yosi,Sampurna Mahendra Tri ArifORCID,Susanto Evan Kusuma,Visuddho VisuddhoORCID,Liem Kian DjienORCID

Abstract

Hyperbilirubinemia is more frequently seen in low and middle-income countries like Indonesia. One of the contributing factors is a substandard dose of Phototherapy irradiance. This research aims to design a phototherapy intensity meter called PhotoInMeter using readily available low-cost components. PhotoInMeter is designed by using a microcontroller, light sensor, color sensor, and an ND (neutral-density) filter. We use machine learning to create a mathematical model that converts the emission from the color sensor and light sensor into light intensity measurements that are close to Ohmeda Biliblanket’s measurements. Our prototype collects sensor reading data and pairs them with Ohmeda Biliblanket Light Meter to create a training set for our machine learning algorithm. We create a multivariate linear regression, random forest, and XGBoost model based on our training set to convert sensor readings to Ohmeda Biliblanket Light Meter measurement. We successfully devised a prototype that costs 20 times less to produce compared to our reference intensity meter while still having high accuracy. Compared to Ohmeda Biliblanket Light Meter, our PhotoInMeter has a Mean Absolute Error (MAE) of 0.83 and achieves more than a 0.99 correlation score in all six different devices for intensity in the range of 0–90 μW/cm2/nm. Our prototypes show consistent reading between PhotoInMeter devices, having an average difference of 0.435 among all six devices.

Funder

Direktorat Jenderal Pendidikan Tinggi

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference24 articles.

1. Trends in hospitalizations for neonatal jaundice and kernicterus in the United States, 1988–2005;BL Burke;Pediatrics,2009

2. Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation;AR Kemper;Pediatrics,2022

3. Phototherapy to Prevent Severe Neonatal Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation (Technical Report);VK Bhutani;Pediatric Clinical Practice Guidelines & Policies,2021

4. High variability and low irradiance of phototherapy devices in Dutch NICUs;DE van Imhoff;Arch Dis Child Fetal Neonatal Ed,2013

5. Phototherapy device effectiveness in nigeria: Irradiance assessment and potential for improvement.;BK Cline;J Trop Pediatr.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phototherapy in Neonates and Future Risk of Childhood Cancers;Handbook of Cancer and Immunology;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3