In vitro spermatogenesis in isolated seminiferous tubules of immature mice

Author:

Feng Xuemin,Matsumura Takafumi,Yamashita Yuki,Sato Takuya,Hashimoto KiyoshiORCID,Odaka Hisakazu,Makino Yoshinori,Okada YukiORCID,Nakamura Hiroko,Kimura Hiroshi,Fujii Teruo,Ogawa TakehikoORCID

Abstract

Mouse spermatogenesis, from spermatogonial stem cell proliferation to sperm formation, can be reproduced in vitro by culturing testis tissue masses of neonatal mice. However, it remains to be determined whether this method is also applicable when testis tissues are further divided into tiny fragments, such as segments of the seminiferous tubule (ST), a minimal anatomical unit for spermatogenesis. In this study, we investigated this issue using the testis of an Acrosin-GFP/Histone H3.3-mCherry (Acr/H3) double-transgenic mouse and monitored the expression of GFP and mCherry as indicators of spermatogenic progression. Initially, we noticed that the cut and isolated stretches of ST shrunk rapidly and conglomerated. We therefore maintained the isolation of STs in two ways: segmental isolation without truncation or embedding in soft agarose. In both cases, GFP expression was observed by fluorescence microscopy. By whole-mount immunochemical staining, meiotic spermatocytes and round and elongating spermatids were identified as Sycp3-, crescent-form GFP-, and mCherry-positive cells, respectively. Although the efficiency was significantly lower than that with tissue mass culture, we clearly showed that spermatogenesis can be induced up to the elongating spermatid stage even when the STs were cut into short segments and cultured in isolation. In addition, we demonstrated that lowered oxygen tension was favorable for spermatogenesis both for meiotic progression and for producing elongating spermatids in isolated STs. Culturing isolated STs rather than tissue masses is advantageous for explicitly assessing the various environmental parameters that influence the progression of spermatogenesis.

Funder

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Yokohama City University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3