A statistical model for early estimation of the prevalence and severity of an epidemic or pandemic from simple tests for infection confirmation

Author:

Shahar Yuval,Mokryn OsnatORCID

Abstract

Epidemics and pandemics require an early estimate of the cumulative infection prevalence, sometimes referred to as the infection "Iceberg," whose tip are the known cases. Accurate early estimates support better disease monitoring, more accurate estimation of infection fatality rate, and an assessment of the risks from asymptomatic individuals. We find the Pivot group, the population sub-group with the highest probability of being detected and confirmed as positively infected. We differentiate infection susceptibility, assumed to be almost uniform across all population sub-groups at this early stage, from the probability of being confirmed positive. The latter is often related to the likelihood of developing symptoms and complications, which differs between sub-groups (e.g., by age, in the case of the COVID-19 pandemic). A key assumption in our method is the almost-random subgroup infection assumption: The risk of initial infection is either almost uniform across all population sub-groups or not higher in the Pivot sub-group. We then present an algorithm that, using the lift value of the pivot sub-group, finds a lower bound for the cumulative infection prevalence in the population, that is, gives a lower bound on the size of the entire infection "Iceberg." We demonstrate our method by applying it to the case of the COVID-19 pandemic. We use UK and Spain serological surveys of COVID-19 in its first year to demonstrate that the data are consistent with our key assumption, at least for the chosen pivot sub-group. Overall, we applied our methods to nine countries or large regions whose data, mainly during the early COVID-19 pandemic phase, were available: Spain, the UK at two different time points, New York State, New York City, Italy, Norway, Sweden, Belgium, and Israel. We established an estimate of the lower bound of the cumulative infection prevalence for each of them. We have also computed the corresponding upper bounds on the infection fatality rates in each country or region. Using our methodology, we have demonstrated that estimating a lower bound for an epidemic’s infection prevalence at its early phase is feasible and that the assumptions underlying that estimate are valid. Our methodology is especially helpful when serological data are not yet available to gain an initial assessment on the prevalence scale, and more so for pandemics with an asymptomatic transmission, as is the case with Covid-19.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference44 articles.

1. Transmission potential and severity of COVID-19 in South Korea;E Shim;International Journal of Infectious Diseases,2020

2. Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: Systematic review and meta-analysis;O Byambasuren;Official Journal of the Association of Medical Microbiology and Infectious Disease Canada,2020

3. Prevalence of Asymptomatic SARS-CoV-2 Infection: A Narrative Review;DP Oran;Annals of internal medicine. NLM (Medline),2020

4. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2);R Li;Science,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3