Abstract
To investigate the impact of social groups on waiting behaviour of passengers at railway platforms a method to identify social groups through the monitoring of distances between pedestrians and the stability of those distances over time is introduced. The method allows the recognition of groups using trajectories only and thus opens up the possibility of studying crowds in public places without constrains caused by privacy protection issues. Trajectories from a railway platform in Switzerland were used to analyse the waiting behaviour of passengers in dependence of waiting time as well as the size of social groups. The analysis of the trajectories shows that the portion of passengers travelling in groups reaches up to 10% during the week and increases to 20% on the weekends. 60% of the groups were pairs, larger groups were less frequent. With increasing group size, the mean speed of the members decreases. Individuals and pairs often choose waiting spots at the sides of the stairs and in vicinity of obstacles, while larger groups wait close to the platform entries. The results indicate that passengers choose waiting places according to the following criteria and ranking: shortest ways, direction of the next intended action, undisturbed places and ensured communication. While individual passengers often wait in places where they are undisturbed and do not hinder others, the dominating comfort criterion for groups is to ensure communication. The results regarding space requirements of waiting passengers could be used for different applications. E.g. to enhance the level of service concept assessing the comfort of different types of users, to avoid temporary bottlenecks to improve the boarding and alighting process or to increase the robustness of the performance of railway platforms during peak loads by optimising the pedestrian distribution.
Funder
Bundesministerium für Bildung und Forschung
Publisher
Public Library of Science (PLoS)
Reference48 articles.
1. Predtetschenski WM, Milinski AI. Personenströme in Gebäuden—Berechnungsmethoden für die Projektierung. Verlagsgesellschaft Rudolf Müller. 1971.
2. Proceedings of Pedestrian and Evacuation Dynamics 2018;A Dederichs;Collective Dynamics,2020
3. Traffic and Granular Flow 2019
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献