High-resolution rural poverty mapping in Pakistan with ensemble deep learning

Author:

Agyemang Felix S. K.ORCID,Memon RashidORCID,Wolf Levi John,Fox Sean

Abstract

High resolution poverty mapping supports evidence-based policy and research, yet about half of all countries lack the survey data needed to generate useful poverty maps. To overcome this challenge, new non-traditional data sources and deep learning techniques are increasingly used to create small-area estimates of poverty in low- and middle-income countries (LMICs). Convolutional Neural Networks (CNN) trained on satellite imagery are emerging as one of the most popular and effective approaches. However, the spatial resolution of poverty estimates has remained relatively coarse, particularly in rural areas. To address this problem, we use a transfer learning approach to train three CNN models and use them in an ensemble to predict chronic poverty at 1 km2 scale in rural Sindh, Pakistan. The models are trained with spatially noisy georeferenced household survey containing poverty scores for 1.67 million anonymized households in Sindh Province and publicly available inputs, including daytime and nighttime satellite imagery and accessibility data. Results from both hold-out and k-fold validation exercises show that the ensemble provides the most reliable spatial predictions in both arid and non-arid regions, outperforming previous studies in key accuracy metrics. A third validation exercise, which involved ground-truthing of predictions from the ensemble model with original survey data of 7000 households further confirms the relative accuracy of the ensemble model predictions. This inexpensive and scalable approach could be used to improve poverty targeting in Pakistan and other low- and middle-income countries.

Funder

Center for Effective Global Action

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3