Detecting hand joint ankylosis and subluxation in radiographic images using deep learning: A step in the development of an automatic radiographic scoring system for joint destruction

Author:

Izumi KeisukeORCID,Suzuki KanataORCID,Hashimoto MasahiroORCID,Endoh Toshio,Doi Kentaro,Iwai Yuki,Jinzaki MasahiroORCID,Ko Shigeru,Takeuchi Tsutomu,Kaneko Yuko

Abstract

We propose a wrist joint subluxation/ankylosis classification model for an automatic radiographic scoring system for X-ray images. In managing rheumatoid arthritis, the evaluation of joint destruction is important. The modified total Sharp score (mTSS), which is conventionally used to evaluate joint destruction of the hands and feet, should ideally be automated because the required time depends on the skill of the evaluator, and there is variability between evaluators. Since joint subluxation and ankylosis are given a large score in mTSS, we aimed to estimate subluxation and ankylosis using a deep neural network as a first step in developing an automatic radiographic scoring system for joint destruction. We randomly extracted 216 hand X-ray images from an electronic medical record system for the learning experiments. These images were acquired from patients who visited the rheumatology department of Keio University Hospital in 2015. Using our newly developed annotation tool, well-trained rheumatologists and radiologists labeled the mTSS to the wrist, metacarpal phalangeal joints, and proximal interphalangeal joints included in the images. We identified 21 X-ray images containing one or more subluxation joints and 42 X-ray images with ankylosis. To predict subluxation/ankylosis, we conducted five-fold cross-validation with deep neural network models: AlexNet, ResNet, DenseNet, and Vision Transformer. The best performance on wrist subluxation/ankylosis classification was as follows: accuracy, precision, recall, F1 value, and AUC were 0.97±0.01/0.89±0.04, 0.92±0.12/0.77±0.15, 0.77±0.16/0.71±0.13, 0.82±0.11/0.72±0.09, and 0.92±0.08/0.85±0.07, respectively. The classification model based on a deep neural network was trained with a relatively small dataset; however, it showed good accuracy. In conclusion, we provided data collection and model training schemes for mTSS prediction and showed an important contribution to building an automated scoring system.

Funder

JSPS Grant-in-Aid for Early-Career Scientists

Fujitsu.Ltd.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference30 articles.

1. How to read radiographs according to the Sharp/van der Heijde method;D van der Heijde;Journal of Rheumatology,1999

2. ImageNet classification with deep convolutional neural networks;A Krizhevsky;In Advances in neural information processing systems,2012

3. EfficientDet: Scalable and Efficient Object Detection;M Tan;In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2020

4. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs;V Gulshan;JAMA,2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3