On closing the inopportune gap with consistency transformation and iterative refinement

Author:

João MarioORCID,Sena Alexandre C.,Rebello Vinod E. F.

Abstract

The problem of aligning multiple biological sequences has fascinated scientists for a long time. Over the last four decades, tens of heuristic-based Multiple Sequence Alignment (MSA) tools have been proposed, the vast majority being built on the concept of Progressive Alignment. It is known, however, that this approach suffers from an inherent drawback regarding the inadvertent insertion of gaps when aligning sequences. Two well-known corrective solutions have frequently been adopted to help mitigate this: Consistency Transformation and Iterative Refinement. This paper takes a tool-independent technique-oriented look at the alignment quality benefits of these two strategies using problem instances from the HOMSTRAD and BAliBASE benchmarks. Eighty MSA aligners have been used to compare 4 classes of heuristics: Progressive Alignments, Iterative Alignments, Consistency-based Alignments, and Consistency-based Progressive Alignments with Iterative Refinement. Statistically, while both Consistency-based classes are better for alignments with low similarity, for sequences with higher similarity, the differences between the classes are less clear. Iterative Refinement has its own drawbacks resulting in there being statistically little advantage for Progressive Aligners to adopt this technique either with Consistency Transformation or without. Nevertheless, all 4 classes are capable of bettering each other, depending on the instance problem. This further motivates the development of MSA frameworks, such as the one being developed for this research, which simultaneously contemplate multiple classes and techniques in their attempt to uncover better solutions.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fragmentando o DNA de Ferramentas de Alinhamento Progressivo: uma Metaferramenta Eficiente;Anais do XXIV Simpósio em Sistemas Computacionais de Alto Desempenho (SSCAD 2023);2023-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3