Introducing a new type of alternative laryngeal mucosa model

Author:

Grossmann TanjaORCID,Kirsch Andrijana,Grill MagdalenaORCID,Steffan Barbara,Karbiener Michael,Brcic LukaORCID,Darnhofer Barbara,Birner-Gruenberger Ruth,Gugatschka Markus

Abstract

Research of human vocal fold (VF) biology is hampered by several factors. The sensitive microstructure of the VF mucosa is one of them and limits the in vivo research, as biopsies carry a very high risk of scarring. A laryngeal organotypic model consisting of VF epithelial cells and VF fibroblasts (VFF) may overcome some of these limitations. In contrast to human VFF, which are available in several forms, availability of VF epithelial cells is scarce. Buccal mucosa might be a good alternative source for epithelial cells, as it is easily accessible, and biopsies heal without scarring. For this project, we thus generated alternative constructs consisting of immortalized human VF fibroblasts and primary human buccal epithelial cells. The constructs (n = 3) were compared to native laryngeal mucosa at the histological and proteomic level. The engineered constructs reassembled into a mucosa-like structure after a cultivation period of 35 days. Immunohistochemical staining confirmed a multi-layered stratified epithelium, a collagen type IV positive barrier-like structure resembling the basement membrane, and an underlying layer containing VFF. Proteomic analysis resulted in a total number of 1961 identified and quantified proteins. Of these, 83.8% were detected in both native VF and constructs, with only 53 proteins having significantly different abundance. 15.3% of detected proteins were identified in native VF mucosa only, most likely due to endothelial, immune and muscle cells within the VF samples, while 0.9% were found only in the constructs. Based on easily available cell sources, we demonstrate that our laryngeal mucosa model shares many characteristics with native VF mucosa. It provides an alternative and reproducible in vitro model and offers many research opportunities ranging from the study of VF biology to the testing of interventions (e.g. drug testing).

Funder

Oesterreichische Nationalbank

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3