222 nm far-UVC efficiently introduces nerve damage in Caenorhabditis elegans

Author:

Yoshiyama Kaoru OkamotoORCID,Okamoto Norihiko L.ORCID,Hidema Jun,Higashitani Atsushi

Abstract

Far-ultraviolet radiation C light (far-UVC; 222 nm wavelength) has received attention as a safer light for killing pathogenic bacteria and viruses, as no or little DNA damage is observed after irradiation in mammalian skin models. Far-UVC does not penetrate deeply into tissues; therefore, it cannot reach the underlying critical basal cells. However, it was unclear whether far-UVC (222-UVC) irradiation could cause more biological damage at shallower depths than the 254 nm UVC irradiation (254-UVC), which penetrates more deeply. This study investigated the biological effects of 222- and 254-UVC on the small and transparent model organism Caenorhabditis elegans. At the same energy level of irradiation, 222-UVC introduced slightly less cyclobutane pyrimidine dimer damage to naked DNA in solution than 254-UVC. The survival of eggs laid during 0–4 h after irradiation showed a marked decrease with 254-UVC but not 222-UVC. In addition, defect of chromosomal condensation was observed in a full-grown oocyte by 254-UVC irradiation. In contrast, 222-UVC had a significant effect on the loss of motility of C. elegans. The sensory nervous system, which includes dopamine CEP and PVD neurons on the body surface, was severely damaged by 222-UVC, but not by the same dose of 254-UVC. Interestingly, increasing 254-UVC irradiation by about 10-fold causes similar damage to CEP neurons. These results suggest that 222-UVC is less penetrating, so energy transfer occurs more effectively in tissues near the surface, causing more severe damage than 254-UVC.

Funder

Koshidaka Holdings Joint Research Funding

Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference55 articles.

1. RNA under attack: cellular handling of RNA damage;E. J. Wurtmann;Crit Rev Biochem Mol Biol,2009

2. 222-nm UVC inactivates a wide spectrum of microbial pathogens.;K. Narita;J Hosp Infect,2020

3. Improved estimates of 222 nm far-UVC susceptibility for aerosolized human coronavirus via a validated high-fidelity coupled radiation-CFD code;A. G. Buchan;Sci Rep,2021

4. Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light.;M. Buonanno;Radiat Res,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3