COVID-19 hotspot detection in a university setting

Author:

Duncan GarrettORCID,Christensen William F.,Handley Camilla

Abstract

The onset of the COVID-19 pandemic commenced an era of widespread disruptions in the academic world, including shut downs, periodic shifts to online learning, and disengagement from students. In an effort to transition back to in-person learning, many universities and schools tried to implement policy that balanced student learning with community health. While academic administrators have little control over some aspects of COVID-19 spread, they often choose to use temporary shutdowns of in-person teaching based on perceived hotspots of COVID-19. Specifically, if administrators have substantial evidence of within-group transmission for a class or other academic unit (a “hotspot”), the activities of that class or division of the university might be temporarily moved online. In this article, we describe an approach used to make these types of decisions. Using demographic information and weekly COVID-19 testing outcomes for university students, we use an XGBoost model that produces an estimated probability of testing positive for each student. We discuss variables engineered from the demographic information that increased model fit. As part of our approach, we simulate semesters under the null hypothesis of no in-class transmission, and compare the distribution of simulated outcomes to the observed group positivity rates to find an initial p-value for each group (e.g., section, housing area, or major). Using a simulation-based modification of a standard false discovery rate procedure, we identify possible hot spots—classes or groups whose COVID-19 rates exceed the levels expected for the demographic mix of students in each group of interest. We use simulation experiments and an anonymized example from Fall 2020 to illustrate the performance of our approach. While our example is based on hotspot detection in a university setting, the approach can be used for monitoring the spread of infectious disease within any interconnected organization or population.

Publisher

Public Library of Science (PLoS)

Reference13 articles.

1. Preventing and Responding to COVID-19 on College Campuses;HT Walke;JAMA,2020

2. Tracking and visualization of space-time activities for a micro-scale flu transmission study;F Qi;International journal of health geographics,2013

3. Social Network Sensors for Early Detection of Contagious Outbreaks;NA Christakis;PloS one,2010

4. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Y Benjamini;Journal of the Royal statistical society: series B (Methodological),1995

5. The control of the false discovery rate in multiple testing under dependency;Y Benjamini;Annals of statistics,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3